
International Journal of Information Technology and Knowledge Management
July-December 2009, Volume 2, No. 2, pp. 365-370

PERFORMANCE EVALUATION OF MEMORY MAPPED FILES
WITH DATA MINING ALGORITHMS

S. N. Tirumal Rao*, E. V. Prasad** & N. B. Venkateswarlu***

The concept of memory mapped files is widely supported by most of the modern operating systems. A study is carried out
with computationally intensive applications such as data mining, to see the benefit of this concept over the conventional file
I/O which calls standard library function fread(). Experiments are carried out in memory mapping with both simulated and
real data. The observations indicated that the memory mapping based versions taking less CPU time compared to fread()
based ones.

Keywords: Memory Mapping, Virtual Address Space, mmap(), Fread(), Data Mining, Clustering.

* Dept of C.S.E, Rao & Naidu Engg. College, Ongole, Andhra
Pradesh, India. Email: naga_tirumalarao@yahoo.com

** J.N.T.U.C.E, Kakinada, A. P, India.
E-mail: drevprasad@yahoo.co.in

*** AITAM, Tekkali, A. P, India. E-mail: venkat_ritch@yahoo.com

1. INTRODUCTION

The goal of Data Mining is to discover knowledge hidden
in data repositories. This activity has recently attracted a
lot of attention. High energy physics experiments produce
hundreds of TBytes of data. Credit card banking sector hold
large databases of customer’s transactions and web search
engines collect web documents worldwide. Regardless of
the application field, Data Mining (DM) allows to ‘dig’ into
huge datasets to reveal patterns and correlations useful for
high level interpretation. Finding clusters, association rules,
classes and time series are the most common DM tasks.
Evidently, classification algorithms and clustering
algorithms are employed for this purpose [14]. All require
the use of algorithms whose complexity, both in time and
in space, grows at least linearly with the dataset size.
Because of the size of the data, and the complexity of the
algorithms, the DM algorithms are reported to be time
consuming [1] and hinder quick policy decision making.
There are many attempts to reduce CPU time requirement
of the DM applications [19, 9, 6].

In recent years much research and development (R&D)
has been focused on the design of hardware and software
systems that can cope with the growth in the dimensions of
the data. Nevertheless, the amount of physical memory of
modern computers is still in orders of magnitude lower than
the size of many databases. Various strategies can be applied
to tackle this problem. One approach investigates the
development of new algorithms that reduce the need for data,
either by exploiting sampling techniques or by limiting
direct access to the database. These methods usually
introduce some inaccuracy or useless CPU overhead.

Another possibility is the exploitation of High Performance
Computing Systems, which can extend the range of
applicability of DM algorithms, without changing the
conceptual limitation.

Many DM algorithms require a computation to be
iteratively applied to all records of a dataset. In order to
guarantee scalability, even on a serial or a small scale parallel
platform (workstation cluster), the increase in the input or
output (I/O) activity must be carefully taken into account.
Paolo Palmerini [21] recognized two main categories of
algorithms with respect to the patterns of their I/O activities.
Read and Compute (R&C) algorithms, which will be useful
for the same dataset at each iteration, and read, compute
and write (RC&W) ones, which at each iteration rewrite
the dataset to be used at the next step. Paolo Palmerini [21]
suggested the employment of ‘Out-of-Core’ (OOC)
techniques which explicitly take care of data movements
which reported to be showing low I/O overhead. An
important OS feature is time-sharing among processes;
widely known as multi-threading, with which one can
overlap I/O actions with useful computations. Kilin et. al.
[16], Gregory Buehrer [12] demonstrated the advantage of
such features in order to design efficient DM algorithms.

In the recent years, many network and other
applications, which demand huge I/O overhead, are reported
to be using a special I/O feature known as mmap() to
improve their performance. For example John et. al., [20]
studied the performance of Apache Server. In addition,
Avadis Tevanian et. al., [7] have been reported that there
would be the CPU time benefit by making use of memory
mapping rather than conventional I/O in Mach Operating
Systems. Nevertheless Joseph, et. al., [11] had also reported
that there was clear cut performance advantage of mmap
over fread and iostream. Because of the huge datasets to be
accessed, most data mining algorithms also must consider
the I/O actions carefully, hiding or minimizing their effects.

��� ��������	
��
�	�����������	�����������������������	

COM6\D:\HARESH\11-JITKM

If the removed cache block is dirty, it needs another
I/O to update dirty block to disk. However in the memory
mapping, entire file is mapped into the process address space
such that the file is treated as an extension of virtual address
space of the process. Here, when we need a byte from the
mapped file, the block (Having the byte) is directly copied
to memory. Only if, the process is not having enough frames
then one of the frames is released to accommodate this new
block. Hence, we may need at the worst two I/O operations
(Figure 2). When the removed block is dirty, it needs another
I/O to update dirty frame to disk. Additionally the program
code is smaller with file mapping, because the file is
accessed through a pointer, like random access memory and
no file system calls need to be used [18].

Most of the commercial data mining tools and public
domain tools such as Clusta [2], Xcluster [26], Rosetta [5],
FASTLab [10], Weka [25] etc., support DM algorithms
which accepts data sets in flat file form or CSV form. Thus,
they use standard I/O functions such as fgetc(), fscanf().
However, fread() is also in wide use with many DM
algorithms [27, 23]. Moreover, earlier studies Jayaprakash
Pisharth [23] indicated that kernel level I/O fine tuning was
very important in getting better throughput from system
while running DM algorithms.

The study of performance for popular clustering
algorithms, k-means [14], max-min [15], k-medoid [14] by
employing mmap() facility existing under popular operating
systems such as Linux and WindowsXP is reported with this
paper. Comparisons are also made with those of fread()
based implementations. Experiments were carried out with
both synthetic and real data.

2. TRADITIONAL FILE I/O

The traditional way of accessing files is to first open them
with the open system call and then use read, write and lseek
calls to do sequential or random access I/O. In general, a
system call leads to a “context switch”, forcing the
application program to stop, while the kernel program
performs the requested operation. With these views, a system
call takes longer than a normal function call within our
own program. However, standard library calls fopen(),
fread(), often optimize operations to minimize the number
of system calls and thus speeds up the program execution
[11].

In addition, the standard I/O library function fread() is
a buffered one [18, 24, 17, 8]. It refers that, when a fread()
call is made, a block of data is read, which may be more
than the requested amount of data (by calling read()
immediately). The extra bytes are held in the buffer. When
our program next calls fread(), it may be able to satisfy the
request using the bytes already in the buffer. It delineates
the elimination of the need for another read() system call.
Thus, the fread() is more efficient than the read() [9].
Because of these reasons, many public domain, commercial
DM algorithms are making use of fread() [4].

2.1 Memory Mapping

A memory mapping of a file is a special file access technique
that is widely supported in popular operating systems such
as Unix and WindowsXP [18, 24, 17, 8]. It is reported that
the mapping of a large file in to the memory (address space)
can significantly enhance the I/O system performance [20].
There is a significant performance difference between
accessing a cached disk record through disk service call
(fread) and accessing a memory record (with mmap()) [1].
Disk service requests require a context switch from user to
supervisory mode, even if the data is in the cache, memory

access calls do not. Such context switches are relatively
expensive operations; for example reading a byte from a
file by using fread() incur up to three I/0 operations [18]
(Figure 1) such as: (1) Removing a cache block to
accommodate new disk block. (2) Reading this disk block
into the buffer cache. (3) Copying the same block into the
process address space from buffer.

Figure 1: Steps Involved in fread()

Figure 2: Steps Involved in mmap()

��	��	���������

�������������	�����������
���������������������
��	����� ���

COM6\D:\HARESH\11-JITKM

find K clusters in N objects by first arbitrarily finding a
representative objects (medoids) for each cluster. Each
remaining object is clustered with the medoid to which it is
most similar. The strategy then iteratively replaces one of
the non-medoids as long as the quality of the resulting
clustering is improved. This quality is estimated using a cost
function that measures the average dissimilarity between
an object and the medoid of its cluster [14]. The steps of
the k-mediods algorithm are given below. Arbitrarily choose
K objects as the initial medoids;

Repeat

Assign each remaining object to the cluster with the nearest
mediod;

Randomly select a non-medoid object, Orandom;

Compute the total cost, S, of swapping Oj with Orandom;

If S < 0 then swap Oj with Orandom to form new set of K
mediods;

Until no change.

3.4 Experimental Set-Up

In this study, we have used randomly generated data set and
Pocker hand data set [22] with the selected algorithms;
k-means [14], max-min [15] and k-medoid [14]. Random
data set is generated to have 10 million records with the
dimensionality of 1026. Pokers hand set data has 1 million
records with ten attributes (dimensions). It is in ASCII
format with comma separated values, which is converted to
binary format before applying our algorithms. It is reported
widely that the formatted I/O operations to consume more
time than unformatted I/O [8]. In order to have further
support, we had executed our algorithms with fgetc() and
fread() and CPU time requirements are observed. We found
fread() based implementations taking less CPU time (Table
1) than fgetc() based ones. Thus, we have carried out all
our experiments with the converted binary data.

3. PERFORMANCE STUDY OF DM ALGORITHMS WITH MMAP()

In order to investigate the performance of mmap() over
fread() in DM, we have selected clustering algorithms
k-means, max-min and K-Mediod.

3.1 k-means Algorithm

The k-means algorithm is based on minimizing the sum of
squared distances dis(X) from all input vectors X in the
cluster domain to their cluster centres [19].

The steps of the K-mean algorithm are given below [14].

i) Select randomly k points (it can be also examples)
to be the seeds for the centroids of k clusters.

ii) Assign each example to the centroid closest to the
example, forming in this way k exclusive clusters
of examples.

iii) Calculate new centroids of the clusters. For that
purpose average all attribute values of the examples
belonging to the same cluster (centroid).

iv) Check if the cluster centroids have changed their
“coordinates”. If yes, start again form the step ii.
If not, cluster detection is finished and all examples
have their cluster memberships defined.

3.2 max-min Algorithm [15]
1. Pick up randomly one of the sample as one cluster

centre.

2. Calculate the distance of all other samples from the
available clusters.

3. Calculate the maximum of the distances.

4. If the maximum distance is greater than the threshold
take the respective sample vector as a cluster centre.

5. Repeat till a no more cluster is created.

3.3 k-medoid Algorithm [14]

The basic strategy of k-medoid clustering algorithm is to

Table 1
Comparison of fgetc() and fread() Performance with k-means Algorithm and Poker Hand Set Data under

Linux Environment. k-means.

Comparison of fgetc() and fread() Performance with k-means Algorithm and Poker Hand Set Data under Linux Environment

No of Time Taken To k-means Alg Total Time Taken To k-means Total in Benefit of
Records Read Records Time Clock Clock Read Records Alg Clock fread()

Using fgetc() Ticks Ticks Using fread() Time Ticks Clock Ticks

1.0 Million 1610000 630000 2240000 140000 630000 770000 1610000
0.9 Million 1470000 560000 2030000 120000 570000 690000 1460000
0.8 Million 1240000 510000 1750000 110000 500000 610000 1250000
0.7 Million 1130000 420000 1550000 90000 440000 530000 1110000
0.6 Million 1030000 380000 1410000 70000 370000 440000 1040000
0.5 Million 790000 310000 1100000 60000 310000 370000 790000
0.4 Million 630000 240000 870000 50000 250000 300000 620000
0.3 Million 490000 180000 670000 40000 190000 230000 480000

��� ��������	
��
�	�����������	�����������������������	

COM6\D:\HARESH\11-JITKM

The k-means and max-min algorithms are tested with
file size of 2 GB. Computational time requirements of these
algorithms with fread() and mmap() functions is observed
with both the data sets under various conditions. Intel
Pentium dual core 2.80 GHz processor with 1 GB RAM,
1 MB Cache memory is used in our study. Fedora 3 Linux
equipped with GNU C++ gcc version 4.1.0 20060304 (Red
hat 4.1.0-3) and WindowsXP with VC++2 in Cygwin gcc
version 3.4.4-3, environment is installed on this machine
with dual booting option to study the performance of the
mmap() under same HW setup. We have carried out
experiments with Cygwin under WindowsXP to see the
performance of mmap() function supported by GNU C
compiler family in relation to Linux environment and the
CPU time is measured in clock ticks.

In order to see the performance of mmap() over fread()
with varying dimensionality, we have carried out these
experiments. From Figure 3 to 9 demonstrate our
observations. We could observe that mmap() is consistently
taking less time than fread() independent of the
dimensionality.

Figure 5: k-means Algorithm with Random Data for 10 Million
Records and also Clusters 10 under Cygwin.

Figure 3: k-means Algorithm with Random Data for 10 Million
Records and also Clusters 2 under Linux.

Figure 4: k-means Algorithm with Random Data for 10 Million
Records and also Clusters 2 under WindowsXP.

Figure 9: k-medoid Algorithm with Pokers Hand Set Data for
0.009 Million Records and also Clusters 2 under WindowsXP.

Figure 6: k-means Algorithm with Pokers Hand Set Data for
1 Million Records and also Clusters 2 under WindowsXP.

Figure 7: max-min Algorithm with Pokers Hand Set Data for
0.1 Million Records and also Threshold 50 under Linux.

Figure 8: k-medoid Algorithm with Pokers Hand Set Data for
0.002 Million Records and also Clusters 2 under Linux.

To see the benefit of mmap() over fread() with varying
number of samples, we have conducted experiments, which
were presented from Figure 10 to 15. We could observe that
the advantage of mmap() over fread() with all our
experiments on all the selected algorithms.

Experiments are carried out to see the performance of
mmap() with varying number of clusters. The observations
from Figure 16 to 18 indicate that the mmap() is showing
its benefit over fread() independent of varying number
samples.

��	��	���������

�������������	�����������
���������������������
��	����� ���

COM6\D:\HARESH\11-JITKM

Figure 15: k-medoid Algorithm with Pokers Hand Set Data for
Dimensionality 3 and also Clusters 2 under WindowsXP.

Figure 16: k-means Algorithm with Random Data for 10 Million
Records and also Dimensionality 10 under Cygwin.

Figure 17: k-means Algorithm with Pokers Hand Set Data for 1
Million Records and also Dimensionality 10 under Cygwin.

Figure 18: max-min Algorithm with Random Data for 10
Million Records and also Dimensionality 4 under Cygwin.

Figure 10: k-means Algorithm with Random Data for
Dimensionality 10 and also Clusters 2 under Linux.

Figure 11: k-means Algorithm with Random Data for
Dimensionality 20 and also Clusters 2 under WindowsXP.

Figure 12: k-means Algorithm with Pokers Hand Set Data for
Dimensionality 10 and also Clusters 10 under Cygwin.

Figure 13: max-min Algorithm with Pokers Hand Set Data for
Dimensionality 10 and also Threshold 50 under WindowsXP .

Figure 14: max-min Algorithm with Random Data for
Dimensionality 4 and also Threshold 40 under Cygwin.

3.5 CONCLUSION

The memory mapping concept supported by operating
systems is studied in comparison to commonly used fread()
based I/O with clustering algorithms k-means, max-min and
k-medoid. Experiments show that memory mapping of files
gives better results than fread() based implementation under
all selected operating systems. Also, the computational
benefit of mmap() over fread() based algorithms is
independent of number of dimensions, number of samples
and number of clusters.

�� ��������	
��
�	�����������	�����������������������	

COM6\D:\HARESH\11-JITKM

3.6 ACKNOWLEDGEMENT

We extend our heartfelt thanks for selecting this article for
the, “IADIS, International Conference on Applied
Computing”, ALGARVE, Portugal, 455-459, April 2008.

4. REFERENCES

[1] Advances in Web-Age Information Management: 4th
International Conference, www.books.google.com/books.

[2] A DM Tool Clusta, http://www.clusta.com.

[3] A DM Tool Cluster, http://rana.lbl.gov/EisenSoftware
Source.htm.

[4] A DM Tool Cluster-1.37, http://bonsai.ims.u-tokyo.ac.jp.

[5] A DM Tool Rosetta, http://rosetta.lcb.uu.se.

[6] Gray, A. and Moore, A. (2004), “Data Structures for Fast
Statistics”, Tutorial Presented at the International
Conference on Machine Learning, Banff, Alberta, Canada.

[7] “A UNIX Interface for Shared Memory and Memory
Mapped Files under Mach”, www.72.14.235.104.

[8] Brain W. Keringhan and Dennis M. Ritchie (2004), “C
Programming Language”, PHI Publications, New Delhi,
India.

[9] ECE 222 System Programming Concepts Lecturer Notes
on System Calls, www.parl.clemson.edu.

[10] FASTLab, A DM Tool, www.FASTLABinc.com.

[11] fread/ifstream, read/mmap Performance Results
www.lastmind.net.

[12] Gregery Bueherg (2006) et. al., “Towards Data Mining An
Enlights, Architectures”, Proceedings of SIAM International
Conference on Data Mining, (20-22 April), Bethesda, MD,
USA.

[13] Jaya Prakash Pisharath, Josephlu Zambreno, Berkin
Oziskylmaz, and Alok Choudhaly (2006), “Accelarating
Data Mining Workloads: Current Approaches and Future
Challenges in System Architecture Design”, Proceedings
of SIAM International Conference on Data Mining, (20-22
April), Bethesda, MD, USA.

[14] Jiawei Han and Micheline Kamber (2006), “Data Mining
Concepts and Techniques”, 2nd edition Morgan Kaufmann
Publishers, San Francisco.

[15] T. Tou, R. C. Gonzales (1974), “Pattern Recognition
Principles”, Addison-Wesley Publishers.

[16] Killen Stoffel and Abdelkades Belkoniene, Parllel (1999),
“k-means Clustering for Large Data Sets”, Proceedings of
Europas.

[17] Maurice J. Bach (2004), “The Design of Unix Operating
System”, PHI Publications, New Delhi, India.

[18] N. B. Venkateswarlu (2005), “Advanced UNIX
Programming”, B. S. Publications, Hyderabad, 1st edition,
(2005).

[19] N. B. Venkateswarlu, M. B. Al-Daoud and S. A. Raberts
(1995), “Fast k-means Clustering Algorithms”, University
of Leads School of Computer Studies Research Report
Series Report 95.18.

[20] “Optimized Performance Analysis of Apache-1.0.5 Server”,
www.isi.edu.

[21] Paolo Palmerini (2001), “Design of Efficient Input/Output
Intensive Data Mining Application”, ERCIM NEWS, 44.

[22] Rabert Cattral and Franz Oppacher Carleton University,
Department of Computer Science Intelligent Systems
Research Unit, Canada, http://archive.ics.uci.edu/ml/
datasets/Poker+Hand.

[23] Tuba Islam (2003), “An Unsupervised Approach for
Automatic Language Identification”, Master Thesis,
Bogaziqi University, Istambul, Turkey.

[24] Uresh Vahalia (2006), “UNIX Internals The New Frontiers”,
Pearson Education, New Delhi, India, Third Impression.

[25] Weka, A DM Tool, http://www.cs.waikato.ac.nz.

[26] Xcluster, A DM Tool, http://genetics.stanford.edu.

[27] Yen-Yu Chen, Dingquing Gasu, Torsten Suel (2002), “I/O
Efficient Techniques for Computing Page Rank”,
Department of Computer and Information Science,
Polytechnique University, Brooklyn, Technical Report-CIS-
(2002-03).

